
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

8-9-2014

VOCAB4ME: A TOOL THAT PROVIDES
VOCABULARY RECOMMENDATIONS FOR
PUBLISHING LINKED DATA
Srikar Nadipally
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

This Open Access Thesis is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Nadipally, S.(2014). VOCAB4ME: A TOOL THAT PROVIDES VOCABULARY RECOMMENDATIONS FOR PUBLISHING
LINKED DATA. (Master's thesis). Retrieved from http://scholarcommons.sc.edu/etd/2878

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2878?utm_source=scholarcommons.sc.edu%2Fetd%2F2878&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

www.manaraa.com

VOCAB4ME: A TOOL THAT PROVIDES VOCABULARY

RECOMMENDATIONS FOR PUBLISHING LINKED DATA

by

Srikar Nadipally

Bachelor of Technology
Kakatiya University, 2009

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Computer Science & Engineering

College of Engineering & Computing

University of South Carolina

2014

Accepted by:

Manton M. Matthews, Director of Thesis

Marco Valtorta, Reader

Colin F. Wilder, Reader

Lacy Ford, Vice Provost and Dean of Graduate Studies

www.manaraa.com

 ii

© Copyright by Srikar Nadipally, 2014
All Rights Reserved.

www.manaraa.com

 iii

DEDICATION

To my parents... who were always there with me!

To my sister... who is my biggest supporter!

To my friends... who were always there by me!

www.manaraa.com

iv

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to Dr. Manton M. Matthews,

for giving me an excellent opportunity to work under his supervision on this

thesis.

 I would also like to thank Dr. Colin F. Wilder, Associate Director Center

for Digital Humanities, for giving me an amazing opportunity to work as a

Research Assistant. My work at CDH has helped me immensely in doing this

thesis.

 Last, but not definitely the least, I would like to thank Dr. Marco Valtorta

for being on my thesis committee.

www.manaraa.com

v

ABSTRACT

 The web before linked data was a database of html documents. These

documents were meant for human consumption and it was hard for machines to

make sense of data in html documents. The linked data was introduced with the

aim of making the web a global database of data that is machine processable.

Linked Data describes a method of publishing structured data so that it can be

interlinked and become more useful. Realizing the promise of linked data a lot of

people started publishing linked data. But the process of publishing the huge

amount of existing data is cumbersome and usually takes someone very

knowledgeable to do it. Publishing linked data on the web requires finding

appropriate vocabularies that describe the semantics of the data. Finding such

vocabularies is difficult to a new user. The proposed system will suggest

vocabularies to use when somebody is trying to publish linked data. The system

does so by using string similarity metrics to match entity and property names in

our dataset to Class and Property names in existing RDF vocabularies.

www.manaraa.com

vi

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. ix

CHAPTER 1: BACKGROUND ...1

CHAPTER 2: PRIMARY AIM ..21

CHAPTER 3: OVERALL DESIGN ..22

CHAPTER 4: DETAILED DESIGN ...25

CHAPTER 5: TESTING ...33

CHAPTER 6: ENVIRONMENT ..36

CHAPTER 7: DEMO ...37

REFERENCES ...44

APPENDIX A – LIST OF POPULAR VOCABULARIES ..47

APPENDIX B – INSTALLATION INSTRUCTIONS ..45

APPENDIX C – LIST OF POPULAR VOCABULARIES ..45

APPENDIX D – LIBRARIES & FRAMEWORKS USED ..47

APPENDIX E – SELENIUM TEST CASES CODE ..48

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Classic Web..16

Figure 1.2 Web APIs & Mashups ..17

Figure 1.3 MicroFormat example ..17

Figure 1.4 RDF graph of Shakespeare ..18

Figure 1.5 Two RDF graphs before merging ..18

Figure 1.6 Merged RDF graph ...19

Figure 1.7 Semantic Web Architecture ...20

Figure 3.1 Overall Design ..24

Figure 4.1 Detailed Design ...29

Figure 4.2 Process of building Vocabulary Catalog ...30

Figure 4.3 Distance based Matcher ...31

Figure 4.4 Semantic Matcher ...31

Figure 4.5 Results sorting process ..32

Figure 7.1 Screenshot 1 ...37

Figure 7.2 Screenshot 2 ...38

Figure 7.2 Screenshot 3 ...39

Figure 7.4 Screenshot 4 ...40

Figure 7.4 Screenshot 5 ...41

www.manaraa.com

 viii

Figure 7.6 Screenshot 6 ...42

Figure 7.7 Screenshot 7 ...43

www.manaraa.com

 ix

LIST OF ABBREVIATIONS

HTML... Hyper Text Markup Language

LOD .. Linked Open Data

OWL ... Web Ontology Language

RDF.. Resource Description Framework

RDFS .. RDF Schema

URI .. Uniform Resource Identifier

URL .. Uniform Resource Locator

URN ... Uniform Resource Name

XML .. Extensible Markup Language

www.manaraa.com

1

CHAPTER 1

BACKGROUND

The web has the huge amount of information about topics varying from

productively performing daily tasks to information on cutting edge research. But

this information is not in a structured format so we are not able to achieve the

full potential of the web. The Semantic Web is an extension of the current web in

which information is given well-defined meaning, better enabling computers and

people to work in cooperation4. To understand why we need semantic web, we

need to understand what is classic web and what are its shortcomings.

1.1 CLASSIC WEB & ITS SHORTCOMINGS:

 The classic web i.e., the web before semantic web was envisioned for

human consumption. The classic web is made up of HTML documents, these

documents are good for humans because humans can read and understand the

information contained in the html document. HTML documents have URIs and

can be uniquely identified and linked to from any document on the web. For this

reason, we call the classic web as a web of documents. Figure 1.1 shows the

architecture of classic Web.

www.manaraa.com

2

Because the classic web was envisioned with human consumption in mind,

the degree of structure in the document is fairly low. The contents of the

semantics of the document are implicit and it is hard for the machine to tell what

a page is talking about. Currently search engines are one of the major consumers

of data and because of the lack of structure in the documents, they cannot give us

what we search for. Consider the following example that is taken from

http://www.mpi-inf.mpg.de/yago-naga/CIKM10-tutorial/, if we wanted to

know if there will ever be another like Elvis Presley and search Google for

“Another Elvis”, the results we get back are related to Elvis Presley. If we search

for “Another singer called Elvis, young” the results we still get are about Elvis

Presley. The classic web also does not allow us to ask expressive queries like

"give me all Soccer players with tricot number 11, playing for a club having a

stadium with over 40,000 seats and is born in a country with over 10 million

inhabitants?”

Classic web also fails to answer complex queries involving background

knowledge like find information about “animals that use sonar but are not either

bats or dolphins”.

One other major problem with the current web is that it does not define any

standard structure for data, as a result it is very difficult to combine data from

multiple sources.

www.manaraa.com

3

1.2 ALTERNATIVE 1 WEB API’S & MASHUPS:

 A Web API is a programmatic interface to expose data in a structured

format. Mashups are web applications that combine the use of multiple Web

API's. One example of a Mashup would be DogPile, which is a search engine that

returns the search results by combining the search results from other leading

search engines. Any application developer can study the documentation of the

Web API or Mashups and write programs that understand the semantics of the

data.

 Even though Web APIs and Mashups provide data in a structured format,

their use is very limited mainly because they amount of data they expose is very

very small compared to the vast amount of web sites which do not expose data

using web services. Also there is no provision to link this data to other related

data and so it can help in discovery of other related data.

1.3 ALTERNATIVE 2 MICROFORMATS:

Microformats embed structured data into HTML pages, by adding

attributes to existing HTML elements, browsers ignore these attributes, but

semantic applications can use these attribute to infer the structure and semantics

of the data. Examples of Microformats include hCard, hCalendar, hReview e.t.c.

Figure 1.3 is an example of an event that is described using Microformats.

 Although the number is increasing, currently there is only fixed set of

Microformats that we can use. Just like Web API’s and mashups, there is no

provision to link data to other related data.

www.manaraa.com

4

1.4 ALTERNATIVE 3 SEMANTIC WEB:

Since the existing alternatives are not sufficient, semantic web was proposed.

Now that we understand why we need semantic web and related technologies,

lets look at what is semantic web and what are the various semantic web

technologies.

Semantic Web: Tim Berners Lee et al coined the term Semantic Web classic

paper on Semantic web. They defined Semantic Web as an extension of the

current web in which information is given well-defined meaning, better enabling

computers and people to work in cooperation.

There are many definitions for semantic web the easiest one was defined

by Bob Du Charme, the author of the book Learning SPARQL. According to him

semantic web is "a set of standards and best practices for sharing data and the

semantics of that data over the Web for use by applications".

Semantic web introduced standards like RDF, RDFS/OWL, SPARQL.

RDF is meant to be used to share data, RDFS and OWL are used to share the

semantics of the data. SPARQL is used for querying the data.

Resource Description Framework (RDF): RDF allows us to make statements

about resources and the relationship between the resources. A resource can be

any thing or a concept in the world. It can be a book or a movie or a person, It

can also be an abstract thing like a disease. RDF allows us to make statements

about all these types of things. One of the key requirements of a resource is that it

www.manaraa.com

5

should be uniquely identifiable by a universally unique name and we generally

use Uniform Resource Identifiers for this purpose.

 An RDF statement is of the form subject predicate object. Because an rdf

statement is made up of three elements, we call RDF statements as triples. The

subject and predicate of a triple should always be resources i.e. uniquely

identifiable using a URI. The Object can be either a resource or a literal. The

following is an example of an informal RDF statement. In the actual statement

we will be having URIs instead of just the names, but for the sake of brevity lets

consider the informal triple.

 <shakespeare> <authorOf> <hamlet>.

 When a human reads this and if he knows about Shakespeare, he can infer

that Shakespeare who is a person is the author of the book hamlet. But a machine

does not know what any of the terms Shakespeare, authorOf or hamlet means.

This information has to be supplied explicitly. Let us expand our RDF

knowledge so that a machine can understand.

 <shakespeare> <type> <Person>

 <hamlet> <type> <Book>

 <shakespeare> <hasName> “William Shakespeare”

 <hamlet> <hasName> “The Tragedy of Hamlet, Prince of

Denmark”

 <shakespeare> <authorOf> <hamlet>.

www.manaraa.com

6

Now that we expanded our triples, a machine can understand what the triple

means.

RDF as a Graph: An RDF document is best visualized as a graph. An RDF graph

is made up of an ellipse to denote a resource, rectangle or a rounded rectangle is

used to denote a literal and properties are denoted using a labeled arrow. The

RDF graph for the document described above is shown in figure 1.4.

 RDF graphs can be merged very easily and new information can be

discovered. If we have a RDF document with a triple that Shakespeare was born

in England and we have another RDF document about England, we can merge

these two documents and infer new information. An example of merging RDF

graphs is shown in figures 1.5 and 1.6.

RDF Serialization: RDF is a data model, if we were to exchange data using this

data model, we need some concrete syntactic representation. Saving the RDF

data to a file is called RDF serialization. There are a lot of RDF serialization

formats.

1. Turtle: a human friendly compact format

2. N-Triples: similar to turtle, but not compact

3. N-Quads: a superset of N-Triples

4. Notation 3(N3): similar to Turtle, with ability to include

inference rules

5. RDF/XML: XML based syntax

www.manaraa.com

7

The RDF serializations in various formats for the document described in

the previous section are shown below.

N-Triple Notation:

<http://example.org/example#shakespeare>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://example.org/example#Person>.

<http://example.org/example#shakespeare>

<http://example.org/example#hasName>

"William Shakespeare".

RDF/XML Notation:

<?xml version="1.0"?>

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:example="http://example.org/example#">

 <example:Person rdf:about="http://example.org/example#shakespeare">

 <example:hasName>William Shakespeare</example:hasName>

 </example:Person>

</rdf:RDF>

www.manaraa.com

8

Turtle Notation:

@prefix example: <http://example.org/example#>.

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 example:shakespeare (a/rdf:type) example:Person ;

 example:hasName “William Shakespeare”;

 example:authorOf example:hamlet.

Limitations of RDF: RDF can only make statements about resources, if we want

to provide semantics of resources we have to use RDF in conjunction with

vocabularies/ontologies. Vocabularies can be defined using RDFS and

Ontologies can be defined using OWL. RDF by it self cannot prevent us from

making statements like the following.

 example:dog authorOf “book”.

RDF Schema (RDFS): RDF Schema defines the basic vocabulary that can be used

in RDF document to describe resources. RDF Schema is a vocabulary description

language, which is built on top of RDF. RDF is very flexible, in that it can only

contain triples. It can convey information but it cannot be used to infer things

from our triples. RDFS primarily helps us to group things or resources in to

classes or hierarchical structures. RDFS is somewhat similar to object oriented

systems. It adds the following terms to make it object oriented.

 RDF:type: This can be used to specify that a resource is an instance of a

particular class. E.g: “example:Person1 rdf:type example:Person”

www.manaraa.com

9

 RDF:class, RDFS:Property: These are used to create new classes and

properties

e.g.: example:Person rdf:type rdf:class

 example:firstName rdf:type rdfs:Property

 RDFS:Domain, RDFS:Range: These are used to specify the domain and

range of a property.

e.g.: example:firstName rdfs:domain example:Person

 example:firstName rdfs:range XSD:String

 RDFS:SubClassOf, RDFS:SubPropertyOf: These are used to create

hierarchies of classes and properties.

e.g.: example:Person rdfs:subclassof rdfs:Human

 example:mother rdfs:subpropertyof example:parent

 RDFS:Label – A string of text describing the resource

 RDFS:Comment – A potentially longer comment about the resource

 RDFS:SeeAlso – Links to other "relevant" resources

 RDFS:Literal – Something that is a primitive data type

Apart from these terms, there are other terms defined that help us define things

like collections, reification. RDFS allows us to infer new triples from existing

triples using entailments. RDFS allows two types of entailments.

www.manaraa.com

10

Class Entailments:

 <Animals rdfs:subClassof LivingBeings>

 <Cats rdfs:subClassOf Animals>

 =>

 <Cats rdfs:subClassOf LivingBeings>

Property Entailments:

 <ParentOf rdfs:subPropertyOf AncestorOf>

 <Fatherof rdfs:subPropertyOf ParentOf>

 =>

 <FatherOf rdfs:subPropertyOf AncestorOf>

Limitations of RDFS: RDFS too weak to describe resources in sufficient detail. We

cannot specify localized domain and range constraints. For example we cannot

say that the range of hasChild is person when applied to persons and elephant

when applied to elephants.

 It does not have any support for specifying existential or cardinality

constraints. For example we cannot say things like a person can have only two

parents.

 It also does not have provisions for specifying transitive, inverse and

symmetrical properties. For example if we have a triple <john> <spouseOf>

<jane>. RDFS does not have a way to specify that spouseOf is a symmetrical

property, using which we can infer that <jane> <spouseOf> <john>.

www.manaraa.com

11

Web Ontology Language (OWL): If we need strict semantics for our data, we

should define Ontology. Ontologies are defined using OWL. Web ontology

language is more expressive than RDFS. It provides all the semantics that RDFS

can express but it adds some more terms to be more expressive. There are three

flavors of OWL Lite, Full and DL with varying levels of expressivity and

restrictions.

 In OWL classes can be defined in many ways by combining different

classes like Union, Intersection, Enumeration, Restriction and Complement. In

OWL we can specify that a person can have at most 2 parents.

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:maxCardinality>2</owl:maxCardinality>

 </owl:Restriction>

 OWL supports defining symmetric, inverse and transitive properties. We

can define a symmetric property called friendOf as shown below.

<owl:SymmetricProperty rdf:ID="friendOf">

 <rdfs:domain rdf:resource="#Human"/>

 <rdfs:range rdf:resource="#Human"/>

 </owl:SymmetricProperty>

Linked Data: The concept of linked data is newer than semantic web itself. It was

proposed to make semantic web more useful. It is a method to create and publish

structured data that can be interlinked with other structured data, so that the

www.manaraa.com

12

data becomes more useful. Data that is published as linked data is machine

processable.

Linked Data vs. Semantic Web: There are no agreed upon differences or

similarities, but the general consensus is that semantic web is made up of linked

data. To elaborate Semantic Web is the whole and Linked Data is the parts. Tim

Berners-Lee, inventor of the Web and the person credited with coining the terms

Semantic Web and Linked Data has frequently described Linked Data as "the

Semantic Web done right" Linked Data is newer than the Semantic Web.

Semantic Web Architecture: Semantic web architecture is an extension of the

normal web architecture. The bottom layer is made of Unicode character set and

URI’s; this layer is useful for communication. The next layer is the XML,

namespace and schema layer, this is an open standard to share data. As the

figure 1.7 shows semantic web adds a few layers on top of existing web

standards. RDF Schema, ontologies and logic will be discussed in detail in the

following sections. The layers above the logic layer are unrealized i.e. they are

just ideas and do not have any standards to implement them yet. We discussed

about RDF, RDFS/OWL layers before, we will discuss remaining below.

Logic layer: Provides a universal language for monotone logic, any existing

system can export the rules but generally cannot import them. Many inference

engines exist which can reason up on the data when provided with additional

information in the form of a vocabulary. Inference on the Semantic Web is one of

the tools of choice to improve the quality of data integration on the Web, by

www.manaraa.com

13

discovering new relationships, automatically analyzing the content of the data,

or managing knowledge on the Web in general. Inference based techniques are

also important in discovering possible inconsistencies in the (integrated) data.

For example, if a data set includes a relation Flipper isA Dolphin and Ontology

declares that “every Dolphin is also a Mammal”, then the inference engine can

add the statement that Flipper is a Mammal to the set of relationships even though

that was not part of the original data.

1.5 PRINCIPLES OF LINKED DATA

 Tim Berners Lee outlined the following principles for linked data.

• Use URIs as names of Things as opposed to just documents

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

• Include links to other URIs, so that they can discover more things.

1.6 WHY PUBLISH LINKED DATA

Publishing data in the linked data format has the following advantages.

• Ease of Discovery: Data can be easily discovered, because it is

linked to other linked data.

• Ease of Consumption: Data is readily available in machine

processable format, which will increase the ease of consumption.

• Reduced Redundancy: Maintaining a single authoritative copy of

the data and linking to that data wherever necessary will reduce the

redundancy, it will also avoid data duplication and data

www.manaraa.com

14

inconsistencies that occur because of data duplication whenever the

data is one copy of the data is updated.

• Added Value: Eco systems can be built around the data

1.7 TOOLS FOR PUBLISHING LINKED DATA:

 The Linked Data community, to help with the creation, linking, testing

and publishing of Linked Data, has developed several tools.

Vocabulary/Ontology Creation Tools: If a data publisher cannot find a relevant

vocabulary, or existing vocabularies are not good enough/suitable for the use

case, they can make their own ontology. Some of the tools that help with

ontology/vocabulary creation are Protege, Neologism, Neon Toolkit and

SWOOP.

Link Discovery Tools: Simply creating Linked Data that is not linked to other

data sources is not enough. The tools like SILK and LIMES can be used to create

links between datasets.

Relational Database Mapping Tools: Most of the data is already present in the

Relational Databases, which have some sort of structure. If we would like to

publish this data as Linked Data, the tools like D2R and Open Link Virtuoso can

be used.

Linked Data Validation Tools: Our Linked Data server should serve HTML when

the user-agent requests a HTML representation and server other RDF

serialization as requested, there are tools like "Vapour Linked Data Validator",

"RDF Alerts" and "Sindice Inspector" which help us to test this functionality.

www.manaraa.com

15

Application Frameworks: Finally there are frameworks like Apache Jena, Sesame

that help us in building Semantic Web and Linked Data applications.

1.8 PUBLISHING LINKED DATA THE PROCESS: The process of publishing

linked data, as outlined by Chris Bizer involves the following steps.

• Understand your Data

o What are the main entities in the dataset?

o What properties does each entity have?

o What are the relationships between each entity?

• Publish it on the Web as RDF.

o Select Vocabularies

o Partition the RDF graph in to data pages

o Assign URI to each data page

o Create HTML Variants of each data page

o Assign URI to each entity

o Add page metadata and link sugar

o Add a semantic sitemap.

• Link it with other Data Sources.

www.manaraa.com

16

Figure 1.1 Classic Web
(From http://events.linkeddata.org/iswc2008tutorial/how-to-publish-linked-

data-iswc2008-slides.pdf)

www.manaraa.com

17

Figure 1.2 Web API's & Mashups
(From http://events.linkeddata.org/iswc2008tutorial/how-to-publish-linked-

data-iswc2008-slides.pdf)

Figure 1.3 Example of a Microformat.

www.manaraa.com

18

Figure 1.4 RDF graph describing Shakespeare

Figure 1.5 two RDF graphs before merging

www.manaraa.com

19

Figure 1.6 Merged RDF graph.

www.manaraa.com

20

Figure: 1.7 Semantic Web Architecture

www.manaraa.com

21

CHAPTER 2

PRIMARY AIM

The first step in publishing Linked Data as RDF is to select vocabularies to

describe the data. One of the best practice is to choose existing vocabularies,

because this enables existing applications to describe the data, this helps in

making your data more interoperable with existing applications. But finding the

existing vocabularies is difficult due to the following reasons.

1. No definitive place to search for existing vocabularies yet.

2. New vocabularies are being created and published every day, choosing

one from is cumbersome for a human because he has to read the

descriptions of all of them.

3. Often times, a single vocabulary does not cover all the entities and

properties in our data, we have to mix and match multiple vocabularies.

 The main functionality of the application is to provide vocabulary

recommendations to users, who are willing to publish their data a linked data.

The primary aim of this application is to help overcome these problems by

automating the process of searching for existing vocabularies from multiple

sources and also mix and match vocabularies.

www.manaraa.com

22

CHAPTER 3

OVERALL DESIGN

The overall design of the application is shown in the figure 3.1. The application is

made up of the following components.

1. User: who supplies all the entities and properties, that have to be modeled

using RDF. The application mainly addresses two use cases.

First use case is where the user manually provides all the information such

as entities, properties and optionally the glosses describing the entities and

properties.

The other use case is where the user already has the data that he

wants to model in a database so the user provides the database connection

parameters and the application fetches the Table names i.e entities and

column names i.e. properties, then the user can provide optional glosses.

2. Database: If we are trying to address the second use case above, data that

has to be modeled is part of a database; metadata of database can be used

to infer the entities and their properties.

3. Popular Vocabularies catalog, which is a catalog of existing vocabularies

on the web along with their popularity.

www.manaraa.com

23

This catalog keeps evolving currently this catalog only contains the

list of vocabularies from the Linked Open Data Cloud. But the application

is flexible enough to add new sources whenever needed.

4. Matcher: This will try to match the user/database input to the appropriate

vocabulary terms. The matcher will return the results sorted based on the

percentage of match from high to low. There are two types of matchers

currently supported. The first type of matcher is a Distance Based matcher,

that matches entities with classes and properties using distance based

metrics like Levenshtein distance.

The second type of matcher is a Semantic Matcher, which takes in

to account the semantic similarity of strings. The Semantic Matcher

matches based on 3 parameters. First the semantic similarity of

entity/property from user input with class/property from vocabulary

catalog. Second it considers the semantic similarity of glosses from input

and catalog. Thirdly it considers the popularity of the vocabulary i.e. how

many datasets in LOD cloud have been described using that vocabulary.

5. Testing: There are test cases for testing the correctness of both the backend

and the UI. The UI test cases are written in Selenium, which is a

framework for testing Angular JS. The backend is composed on web

services and logic for matching which are written in Java. The correctness

of these is tested using JUnit, Hamcrest and Mockito.

www.manaraa.com

24

Figure 3.1 Overall Design

www.manaraa.com

25

CHAPTER 4

DETAILED DESIGN

The figure 4.1 illustrates the detailed design of the vocabulary recommendation

process. The entire process can be divided into 3 phases.

4.1 INPUT PREPROCESSING:

Careful analysis of current ontologies/vocabularies revealed that the names for

majority of the entities are in either upper camel case or in underscore separated

words. Similarly names of properties are in lower camel case or underscore

separated words. So the input has to be transformed to these two formats.

Either a user can provide the input to the system or it can be extracted

from a database. If a user provides the input, we assume that the data is already

in processed and ready to use for matching. But if the input has to be extracted

from a database, the input should be pre-processed before it is used for

matching.

Input passes through a transformer, which can be configured to apply

multiple transformation rules to transform the input values before comparison.

www.manaraa.com

26

The transformer supports the following transformation rules

● removeSpecialChars - removes all special characters

● alphaReduce - removes everything except alphabets

● underscore - converts all words to lowercase.

● camelCase –converts all words to camel case.

4.2 BUILDING VOCABULARY CATALOG:

The process of building vocabulary is shown in the figure 4.2. Vocabulary

Catalog is a collection of vocabularies and ontologies. The LOD stats website

maintains comprehensive statistics about the datasets adhering to the RDF

framework. The system will first connect to the LOD stats website and get a list

of all vocabularies from it. Right now LOD has a list 543 vocabularies when we

remove all the duplicates we have about 430 vocabularies.

For each vocabulary in this list, we run “schemagen” which is a tool

provided apache Jena project. This tool converts the vocabulary or ontology in to

a Java class file with a list of resources (classes) and properties.

This process takes a lot of time, to make this faster the system uses a

thread pool that makes use of the multi core nature of the current processors and

runs multiple instances of schemagen in multiple threads on each core and

speeds up by an order of number of processors available on the machine on

which the tool is running.

www.manaraa.com

27

The system will then submit these java files to a vocabulary summarizer,

which summarizes the vocabulary and allows us to get all the classes and

properties defined in each vocabulary.

4.3 COMPARE & MATCH:

In this phase the input, which is a collection of entities and properties, will

be matched with the collection of classes and properties from the vocabulary

catalog that has been built and the results then displayed to the user in the order

of similarity. The application provides two types of matchers a detailed

discussion about them is provided below.

Distance Based Matcher:

The input to the matcher is a list of search keywords with an optional

description for each keyword and a list of Resource/Property from the catalog.

This matcher uses Levenshtein distance to compare search keyword with the

object from catalog and if the similarity is greater than the threshold, then the

catalog object is added to the results. Finally the results are ordered by the

popularity of the vocabulary. Figure 4.3 gives an overview of how Distance

Based Matcher works.

If the user provides a gloss/description for the entity or the property, then

the gloss is compared with the description of the resource or the property. The

results are then sorted based on the percentage of similarity. Any ties are broken

based on the popularity of the vocabulary. If the user does not provide any

www.manaraa.com

28

glosses, then the results are sorted by the match percentage and then the

popularity of the vocabulary.

Semantic Matcher:

The input to the matcher is a list of search keywords with an optional

description for each keyword and a list of Resource/Property from the catalog.

This Matcher uses WordNet to semantically compare the search keyword and

the resource/property. If the similarity is greater than the threshold, the

resource/property is added to the list of results. The result includes the matched

resource as well as the percentage of similarity. Figure 4.4 gives an overview of

how Semantic Matcher works.

If the user provides a gloss for the entity or the property, then the gloss is

compared with the description of the resource or the property. The results are

then sorted based on the percentage of similarity. Any ties are broken based on

the popularity of the vocabulary. If the user does not provide any glosses, then

the results are sorted by the match percentage and then the popularity of the

vocabulary. The results sorting process is shown in the figure 4.5.

www.manaraa.com

29

Figure 4.1: Detailed Design

www.manaraa.com

30

Figure 4.2: Process of building Vocabulary Catalog

www.manaraa.com

31

Figure 4.3: Distance Based Matcher

Figure 4.4: Semantic Matcher

www.manaraa.com

32

Figure 4.5 Process of sorting the match results

www.manaraa.com

33

CHAPTER 5

TESTING

Two types of testing are performed to test the correctness of the application.

1. Functional Testing: In this type of testing, we will be testing the UI

functionality of the application. This is performed using Selenium and

JUnit. Functional testing involves the following steps. First we identify

the functionality of the application. Then we create the inputs for the

application. Execute the test case and compare the actual results to the

expected results.

Vocab4me has the following functionalities with sub functions that

module performs.

a. Generate Vocabulary Recommendations From Scratch

i. Add Entity

ii. Add Property

iii. Get Recommendations by Semantic Matching

iv. Get Recommendation by Distance Based Matching

www.manaraa.com

34

b. Generate Vocabulary Recommendation from Database

i. Get Database Credentials and Display Table and Column

Names

ii. Transform table & column names to required format

iii. Get Recommendations By Semantic Matching

iv. Get Recommendations By Distance Based Matching

All the functional test cases will be written using Selenium Web Driver for

Java and JUnit. The following test cases are written to verify the

correctness.

Add Entity: When this operation is performed, a new Entity has to be

added to the tree structure. A test case is written to make sure that the

Entity is being added as expected.

Add Property: When this operation is performed, a new Property has to be

added to the selected node in the tree structure. A test case is written to

make sure that the Property is being added as expected.

Get Recommendations By Distance Based Matching: When this operation

is performed, the application should send the input entities and properties

populated either manually by the user or by the populating them from the

www.manaraa.com

35

database to the backend and the backend generates recommendations and

sends it to the frontend and the results are displayed on the UI.

Get Recommendations By Semantic Matching: When this operation is

performed, the application should send the input entities and properties

populated either manually by the user or by the populating them from the

database to the backend and the backend generates recommendations and

sends it to the frontend and the results are displayed on the UI.

Get Database Credentials and Display Table and Column Names: The

application takes the database credentials from the user and displays the

table and column names on the UI. A test case is written to ensure this

functionality.

Transform Table & Column Names: The application supports

transforming the table and column names extracted from database to a

format that is most suitable for matching entities. Application supports

several different transformations. Test cases are written to make sure this

functionality is as expected.

2. Unit Testing: In Unit testing, we will be performing testing of

individual units such as classes are tested for their correctness. We will

be performing unit testing of critical components such as

DistanceBasedMatcher and SemanticMatcher.

www.manaraa.com

36

CHAPTER 6

ENVIRONMENT

Software Requirements:

1. Operating System: Windows/Linux/Mac OS

2. Server: any Java web server

3. Programming Language: Java

4. Schemagen from Apache Jena Library

5. Web browser: any modern browser

6. Selenium Web Driver

7. Maven for build and dependency management.

www.manaraa.com

37

CHAPTER 7

DEMONSTRATION

This section demonstrates how to use the application. The figure 7.1 shows the

home page of the application. From this screen, the user can either choose to

generate vocabulary recommendations from scratch or generate them from

database

Figure 7.1 Initial Welcome screen

www.manaraa.com

38

When the user selects generate recommendations from scratch, he will go to the

page as shown in the figure 7.2. From here the user can add entities and

properties manually, then he can choose to get recommendations using semantic

matching or using Distance Based Matching.

Figures 7.2 UI Screen for generating recommendations from scratch

www.manaraa.com

39

From the home screen when the user selects generate recommendations from

database, he will go to the page as shown in the figure 7.3. Here the user can

enter the database credentials and get the database table and column names.

When the user presses submit and the credentials are correct, a screen very

similar to Figure 7.4 will be shown. From here the user can transform the table

and column names from Camel case to underscore notation and vice-versa and

get recommendations.

Figures 7.3 UI Screen for entering database credentials

www.manaraa.com

40

The figure 7.4 illustrates how the user can add new entities, when he chooses to

generate recommendations from scratch. When the user adds a new entity, it will

be shown in the tree structure shown on the page.

Figure 7.4 UI Screen to add new entities

www.manaraa.com

41

The figure 7.5 illustrates how the user can add new properties, when he chooses

to generate recommendations from scratch. The user has to select the entity node

for which he is adding the property and add the property. When the user adds a

new Property, it will be shown in the tree structure below the corresponding

entity node the user selected.

Figure 7.5 UI Screen to add new properties

www.manaraa.com

42

The figure 7.6 shows the list of recommendations generated by the application

for the Organization entity when the user chose Distance based matching.

Figure 7.6 UI Screen displaying the list of suggestions for entity organization,
when matching is done using Distance Based Matcher

www.manaraa.com

43

Figure 7.7 UI Screen displaying the list of suggestions for entity Organization,
when matching is done using Semantic Matcher

www.manaraa.com

44

REFERENCES

1. Allemang, Dean, and Jim Hendler. SEMANTIC WEB for the WORKING

ONTOLOGIST. Morgan Kaufmann, 2008.

2. Heath, Tom, Christian Bizer, and James Hendler. Linked Data Evolving the

Web into a Global Data Space. Morgan & Claypool Publishers, 2011.

3. Tom, Heath. Linked Data, "Linked Data: Frequently Asked Questions."

Accessed November 19, 2013. http://linkeddata.org/faq.

4. Scientific American: Feature Article: The Semantic Web: May

2001.[ONLINE] Available at: http://www-

sop.inria.fr/acacia/cours/essi2006/Scientific%20American_%20Feature%

20Article_%20The%20Semantic%20Web_%20May%202001.pdf. [Accessed

27 February 2014].

5. Bernadette, Hyland, Ghislain Atemezing, Boris Villazón-Terrazas. W3C

Working Group, "Best Practices for Publishing Linked Data." Accessed

January 19, 2014. http://www.w3.org/TR/ld-bp/.

6. LODStats - 543 Vocabularies. 2014. LODStats - 543 Vocabularies.

[ONLINE] Available at: http://stats.lod2.eu/vocabularies. [Accessed 24

February 2014].

http://linkeddata.org/faq
http://www.w3.org/TR/ld-bp/

www.manaraa.com

45

7. Publishing information in the Linked Open Data cloud | The

Bioinformatics Knowledgeblog. 2014. Publishing information in the

Linked Open Data cloud | The Bioinformatics Knowledgeblog. [ONLINE]

Available at:

http://bioinformatics.knowledgeblog.org/2011/07/05/publishing-

information-in-the-linked-open-data-cloud/. [Accessed 24 February 2014].

8. Resource Description Framework (RDF): Concepts and Abstract Syntax.

2014. Resource Description Framework (RDF): Concepts and Abstract

Syntax. [ONLINE] Available at: http://www.w3.org/TR/2004/REC-rdf-

concepts-20040210/. [Accessed 24 February 2014].

9. Semantic Web - XML2000 - Slide list. 2014. Semantic Web - XML2000 -

Slide list. [ONLINE] Available at: http://www.w3.org/2000/Talks/1206-

xml2k-tbl/. [Accessed 24 February 2014].

10. Inference - W3C. 2014. Inference - W3C. [ONLINE] Available at:

http://www.w3.org/standards/semanticweb/inference.html. [Accessed

24 February 2014].

11. Apache Jena - Jena schemagen HOWTO. 2014. [ONLINE] Available at:

http://jena.apache.org/documentation/tools/schemagen.html.

[Accessed 24 February 2014].

12. The D2RQ Platform – Accessing Relational Databases as Virtual RDF

Graphs. 2014. [ONLINE] Available at: http://d2rq.org/. [Accessed 24

February 2014].

www.manaraa.com

46

13. Silk Link Discovery Framework Project | Assembla. 2014. [ONLINE]

Available at: https://www.assembla.com/spaces/silk/wiki. [Accessed 24

February 2014].

www.manaraa.com

47

APPENDIX A

FUTURE SCOPE

1. Integrate the application with D2RQ:

Once the user finalizes all the recommendations provided by the applications,

we can generate mapping file that uses these recommendations and fully

automate publishing linked data from relational databases.

2. Save recommendations to a file and open existing recommendations

www.manaraa.com

48

APPENDIX B

Installation Instructions

Download the source of vocab4me from the following URL
https://drive.google.com/file/d/0BwxhXpW7hFEyVFlWM015YUdzeUE/edit?
usp=sharing

Extract the zip file of vocab4me2 and in the command prompt or terminal go to
the directory containing the pom.xml

Install Maven and add maven to the operating system path.

Then run the following two commands to install library files that are not part of
maven central repository.

1. mvn install:install-file -Dfile=src/main/webapp/WEB-INF/lib/ws4j-
1.0.1.jar -DgroupId=com.ws4j -DartifactId=ws4j -Dversion=1.0.1 -
Dpackaging=jar -DgeneratePom=true

2. mvn install:install-file -Dfile=src/main/webapp/WEB-
INF/lib/simmetrics1_6_2.jar -DgroupId=com.simmetrics -
DartifactId=simmetrics -Dversion=1.6.2 -Dpackaging=jar -
DgeneratePom=true

After this step run the following command and check to see if the project is setup
correctly.

 mvn compile
If everything works out fine run the following command that will start a tomcat
server, deploy the application to tomcat.

 mvn tomcat:run

https://drive.google.com/file/d/0BwxhXpW7hFEyVFlWM015YUdzeUE/edit?usp=sharing
https://drive.google.com/file/d/0BwxhXpW7hFEyVFlWM015YUdzeUE/edit?usp=sharing

www.manaraa.com

49

If everything went well if we navigate to
http://localhost:8080/vocab4me2/Vocab4Me.html in your browser, you should
be able to see the application up and running.

http://localhost:8080/vocab4me2/Vocab4Me.html

www.manaraa.com

50

APPENDIX C

LIST OF POPULAR VOCABULARIES

1. http://purl.org/dc/elements/1.1/

2. http://www.w3.org/2004/02/skos/core#

3. http://www.w3.org/2003/01/geo/wgs84_pos#

4. http://www.w3.org/1999/xhtml/vocab#

5. http://www.aktors.org/ontology/portal#

6. http://purl.org/ontology/bibo/

7. http://purl.org/ontology/mo/

8. http://www.w3.org/2006/vcard/ns#

9. http://rdfs.org/sioc/ns#

10. http://creativecommons.org/ns#

11. http://www.geonames.org/ontology#

12. http://purl.org/vocab/frbr/core#

13. http://www.w3.org/2001/XMLSchema#

14. http://www.w3.org/2006/time#

15. http://purl.org/NET/c4dm/event.owl#

16. http://dbpedia.org/resource/

17. http://purl.org/goodrelations/v1#

www.manaraa.com

51

18. http://dbpedia.org/ontology/

19. http://purl.org/vocab/bio/0.1/

20. http://dbpedia.org/property/

21. http://www.holygoat.co.uk/owl/redwood/0.1/tags/

22. http://rdfs.org/ns/void#

23. http://purl.org/NET/scovo#

24. http://www.w3.org/2006/http#

25. http://purl.uniprot.org/core/

26. http://umbel.org/umbel#

27. http://purl.org/stuff/rev#

28. http://purl.org/linked-data/cube#

29. http://rdf.geospecies.org/ont/geospecies#

30. http://purl.org/linked-data/sdmx#

31. http://www.w3.org/ns/sawsdl#

32. http://www.w3.org/ns/org#

33. http://purl.org/vocab/vann/

34. http://data.ordnancesurvey.co.uk/ontology/admingeo/

35. http://www.w3.org/2007/05/powder-s#

36. http://usefulinc.com/ns/doap#

37. http://lod.taxonconcept.org/ontology/txn.owl#

38. http://xmlns.com/wot/0.1/

39. http://purl.org/net/compass#

www.manaraa.com

52

40. http://www.w3.org/2004/03/trix/rdfg-1/

41. http://purl.org/NET/c4dm/timeline.owl#

42. http://purl.org/dc/dcam/

43. http://swrc.ontoware.org/ontology#

44. http://zeitkunst.org/bibtex/0.1/bibtex.owl#

www.manaraa.com

53

APPENDIX D

LIBRARIES & FRAMEWORKS USED

1. Apache Jena framework for using Schemgen

2. Angular JS, which is a MVC JavaScript framework for UI.

3. Apache Commons

4. Google Guava

5. Jackson, which is an implementation of JAXRS restful web services in Java

6. GSON, JSON processing library from Google

7. Simmetrics - which contains implementation of Distance based matching

algorithms

8. WS4J - which contains implementation of semantic matching algorithms

9. JUnit, Mockito & Hamcrest for unit testing.

www.manaraa.com

54

APPENDIX E

SELENIUM TEST CASES

These test cases are written for chrome browser. They use the chrome driver for

executing the test cases. The following is a listing of the support classes and

selenium test classes.

MyChromeDriver.java

package com.vocab4me.selenium;

import org.openqa.selenium.chrome.ChromeDriver;

import com.vocab4me.util.Utils;

public class MyChromeDriver extends ChromeDriver{

 static{

 System.setProperty("webdriver.chrome.driver",

Utils.getResourcesDirectory().getAbsolutePath()+"/chromedriver");

 }

 public static final String HOME_URL =

"http://localhost:8080/vocab4me2/Vocab4Me.html";

}

www.manaraa.com

55

HomePage.java

package com.vocab4me.selenium;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.support.FindBy;

public class HomePage {

 public HomePage(WebDriver driver) {

 this.driver = driver;

 driver.get(MyChromeDriver.HOME_URL+"#/welcome");

 }

 public String getCurrentURL(){

 return driver.getCurrentUrl();

 }

 public void navigateToFromScratchPage(){

 fromScratchPage.click();

 }

 public void navigateToFromDBPage(){

 fromDBPage.click();

 }

 public void close(){

www.manaraa.com

56

 driver.close();

 }

 @FindBy(name="fromScratchPage") WebElement fromScratchPage;

 @FindBy(name="fromDBPage") WebElement fromDBPage;

 private final WebDriver driver;

}

HomePageTest.java

package com.vocab4me.selenium;

import static org.hamcrest.MatcherAssert.assertThat;

import static org.hamcrest.Matchers.*;

import static org.junit.Assert.*;

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import org.openqa.selenium.support.PageFactory;

www.manaraa.com

57

public class HomePageTest {

 private static HomePage homePage;

 @BeforeClass

 public static void openTheBrowser() {

 homePage = PageFactory.initElements(new MyChromeDriver(),

HomePage.class);

 }

 @Test

 public void testHomePageToFromScratchNavigation() throws Exception {

 homePage.navigateToFromScratchPage();

 Thread.sleep(2000);

 assertThat(homePage.getCurrentURL(),

equalTo(MyChromeDriver.HOME_URL+"#/fromScratch"));

 }

 @Test

 public void testHomePageToFromDBNavigation() throws Exception {

 homePage.navigateToFromDBPage();

 Thread.sleep(2000);

 assertThat(homePage.getCurrentURL(),

equalTo(MyChromeDriver.HOME_URL+"#/fromDB"));

www.manaraa.com

58

 }

 @AfterClass

 public static void closeTheBrowser() {

 homePage.close();

 }

}

FromScratchPage.java

package com.vocab4me.selenium;

import static org.hamcrest.MatcherAssert.assertThat;

import static org.hamcrest.Matchers.*;

import java.util.Iterator;

import java.util.List;

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.By;

import org.openqa.selenium.NoSuchElementException;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.support.FindBy;

import org.openqa.selenium.support.FindBys;

import org.openqa.selenium.support.ui.FluentWait;

import org.openqa.selenium.support.ui.Wait;

www.manaraa.com

59

import com.google.common.base.Function;

import com.google.common.base.Predicate;

import com.google.common.collect.Collections2;

import com.google.common.collect.Lists;

public class FromScratchPage {

 @FindBy(id="addEntity") private WebElement addEntityButton;

 @FindBy(id="addProperty") private WebElement addPropertyButton;

 @FindBy(id="entityDone") private WebElement addEntityDoneButton;

 @FindBy(id="propertyDone") private WebElement

addPropertyDoneButton;

 @FindBy(id="matcher1") private WebElement distanceBasedMatcher;

 @FindBy(id="matcher2") private WebElement semanticMatcher;

 @FindBy(id="getRecommendations") private WebElement

getRecommendationsButton;

 @FindBy(id="tempEntityName") private WebElement

newEntityInputBox;

 @FindBy(id="tempPropertyName") private WebElement

newPropertyInputBox;

 @FindBys(@FindBy(css="div #treeView > li")) private List<WebElement>

www.manaraa.com

60

entities;

 @FindBys(@FindBy(css="div[name='children'] #treeView > li")) private

List<WebElement> properties;

 private WebDriver driver;

 public FromScratchPage(WebDriver driver) {

 this.driver = driver;

 driver.get(MyChromeDriver.HOME_URL+"#/fromScratch");

 }

 public void addEntity(String name){

 assertThat(newEntityInputBox.isDisplayed(), equalTo(false));

 addEntityButton.click();

 assertThat(newEntityInputBox.isDisplayed(), equalTo(true));

 newEntityInputBox.sendKeys(name);

 addEntityDoneButton.click();

 assertThat(newEntityInputBox.isDisplayed(), equalTo(false));

 }

 public void addProperty(String entityName, String propertyName){

 assertThat(addPropertyButton.isEnabled(), equalTo(false));

 WebElement element = findEntityWithName(entityName);

www.manaraa.com

61

 element.findElement(By.tagName("span")).click();

 assertThat(addPropertyButton.isEnabled(), equalTo(true));

 assertThat(newPropertyInputBox.isDisplayed(), equalTo(false));

 addPropertyButton.click();

 assertThat(newPropertyInputBox.isDisplayed(), equalTo(true));

 newPropertyInputBox.sendKeys(propertyName);

 addPropertyDoneButton.click();

 assertThat(newPropertyInputBox.isDisplayed(), equalTo(false));

 }

 private WebElement findEntityWithName(String entityName) {

 for(WebElement entity : entities){

 if(entity.findElement(By.tagName("span")).getText().equals(entityName)){

 return entity;

 }

 }

 //throw new NoSuchElementException("Entity with the specified

name does not exist");

www.manaraa.com

62

 return null;

 }

 public void selectMatcher(String name){

 if(name.equalsIgnoreCase("semanticmatcher")){

 semanticMatcher.click();

 }else{

 distanceBasedMatcher.click();

 }

 }

 public void clickOnGetRecommendations() {

 if(matcherNotSelected()){

 throw new RuntimeException("Matcher should be selected

for recommendations");

 }

 getRecommendationsButton.click();

 WebElement element =

driver.findElement(By.cssSelector("#treeView li select"));

 while(!element.isDisplayed()){

www.manaraa.com

63

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {}

 }

 }

 private boolean matcherNotSelected() {

 return !(semanticMatcher.isSelected() ||

distanceBasedMatcher.isSelected());

 }

 public void close() {

 driver.close();

 }

 public List<String> getRecommendationsFor(String entityName) {

 WebElement entityElement = findEntityWithName(entityName);

www.manaraa.com

64

 List<WebElement> recommendationElements =

entityElement.findElements(By.cssSelector("select")).get(0).findElements(By.tagN

ame("option"));

 List<String> recommendations = Lists.newArrayList();

 for(WebElement recommendation : recommendationElements){

 recommendations.add(recommendation.getText());

 }

 return recommendations;

 }

 public List<String> getPropertiesForEntity(String entityName){

 List<String> properties = Lists.newArrayList();

 WebElement entityElement = findEntityWithName(entityName);

 List<WebElement> propElements =

entityElement.findElements(By.cssSelector("li"));

www.manaraa.com

65

 for(WebElement prop : propElements){

 properties.add(prop.getText());

 }

 return properties;

 }

 public List<String> getEntities(){

 List<String> entitiesStr = Lists.newArrayList();

 for(WebElement entity : entities){

 entitiesStr.add(entity.getText());

 }

 return entitiesStr;

 }

 public void refresh() {

 driver.navigate().refresh();

 }

}

www.manaraa.com

66

FromScratchPageTest.java

package com.vocab4me.selenium;

import static org.hamcrest.MatcherAssert.*;

import static org.hamcrest.Matchers.*;

import static org.junit.Assert.assertTrue;

import java.util.List;

import org.apache.commons.lang3.StringUtils;

import org.apache.commons.lang3.SystemUtils;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import org.openqa.selenium.support.PageFactory;

import com.hp.hpl.jena.reasoner.rulesys.builtins.GreaterThan;

public class FromScratchPageTest {

www.manaraa.com

67

 private static FromScratchPage fromScratchPage;

 @BeforeClass

 public static void openTheBrowser() {

 fromScratchPage = PageFactory.initElements(new

MyChromeDriver(), FromScratchPage.class);

 }

 @Before

 public void refresh(){

 fromScratchPage.refresh();

 }

 @Test

 public void testAddEntity() throws Exception {

 fromScratchPage.addEntity("Book");

 List<String> entities = fromScratchPage.getEntities();

 assertThat(entities, hasSize(greaterThan(0)));

 assertThat(entities.get(entities.size() - 1), equalTo("Book"));

 }

www.manaraa.com

68

 @Test

 public void testAddProperty() throws Exception {

 fromScratchPage.addEntity("Book");

 fromScratchPage.addProperty("Book", "authorName");

 List<String> props =

fromScratchPage.getPropertiesForEntity("Book");

 assertThat(props, hasSize(greaterThan(0)));

 assertThat(props.get(props.size() - 1), equalTo("authorName"));

 }

 @Test

 public void testGetRecommendationsSemanticMatcher() throws

Exception {

 fromScratchPage.selectMatcher("semanticMatcher");

 fromScratchPage.clickOnGetRecommendations();

 Thread.sleep(1000);

 List<String> recommendationsFor =

fromScratchPage.getRecommendationsFor("Person");

 assertThat(recommendationsFor.size(), greaterThan(0));

www.manaraa.com

69

 }

 @Test

 public void testGetRecommendationsDistanceBasedMatcher() throws

Exception {

 fromScratchPage.selectMatcher("distanceBasedMatcher");

 fromScratchPage.clickOnGetRecommendations();

 Thread.sleep(1000);

 List<String> recommendationsFor =

fromScratchPage.getRecommendationsFor("Person");

 assertThat(recommendationsFor.size(), greaterThan(0));

 for(String recommendation : recommendationsFor){

 if(recommendation.isEmpty()){

 continue;

 }

 assertThat(StringUtils.containsIgnoreCase(recommendation,

"person"), equalTo(true));

 }

 }

www.manaraa.com

70

 @AfterClass

 public static void closeTheBrowser() {

 fromScratchPage.close();

 }

}

	University of South Carolina
	Scholar Commons
	8-9-2014

	VOCAB4ME: A TOOL THAT PROVIDES VOCABULARY RECOMMENDATIONS FOR PUBLISHING LINKED DATA
	Srikar Nadipally
	Recommended Citation

